Summary: This article gives the author's techniques for locating and stimulating trigger points (TP's) using a conductivity, GSR (Galvanic Skin Response), to identify and treat problems. While the results are subjective, the individuals in both the treated and placebo groups showed improved pain relief.

Results: Using a wheatstone bridge, skin conductivity is measured during acupuncture treatments. The author notes that conductivity is highest over trigger points, and galvanic stimulation is effective in treating pain.

Microcurrent: The author describes the use of microcurrent in the treatment of pain. Microcurrent's easy accessibility makes it more preferable than other treatments. Both microcurrent and placebo treatments were applied to patients, and the results were compared.

Conclusion: Microcurrent stimulation produces significant therapeutic effects in the treatment of pain. Further research is needed to confirm these findings and to determine the optimal parameters for treatment.

Keywords: EEG, FFT, chaos analysis, neurofeedback, microcurrents.

References:
4. J. A. Spadaro, S. E. Chase, and D. A. Webster: Changes Due to Pulses of Direct Electric Fields in Limb Regeneration Limb Orthopedics and Related Research, April 1987
6. 30 hospital patients with non healing ulcers were divided into three groups. The first group received microcurrent-stimulated wounds in test pigs over 3 days. The second group received placebo treatment, and the third group received microcurrent treatment. The results showed that microcurrent treatment accelerated wound healing.
7. Sinitsyn, Razvozva (Russian): Effects of Electrical Stimulation on Tissue Healing. Biomedical Scientific Instruments, #10, 1974
10. C. M. Gray and Bertolucci: Clinical Comparative Study Laser to Treat Pain of TMJ syndrome. Both microcurrent and placebo treatments were applied to patients, and the results were compared.
11. 26 rabbits had platinum electrodes surgically implanted into the medullary cavities of their humerus. The animals were divided into three groups. The first group was stimulated with negative currents, the second group with positive currents, and the third group with placebo treatment. The results showed that microcurrent treatment accelerated bone formation.
13. Reichmanis, Marino, and Becker: Electrical stimulation (or the group treated with cathodal currents).
14. The tissues stimulated acted as anode (positive polarity), and slight tissue necrosis occurred around the anode. The tissues stimulated acted as cathode (negative polarity), and there was no tissue necrosis.
15. The third group's tendons were stimulated with negative currents, which further stimulated the tissue. The control group showed no significant difference in healing.
16. J. A. Spadaro, S. E. Chase, and D. A. Webster: Changes Due to Pulses of Direct Electric Fields in Limb Regeneration Limb Orthopedics and Related Research, April 1987
17. The results showed that the group treated with microcurrents showed a 150-250% faster healing rate, with stronger scar tissue and less pain and infection compared to the placebo group.
18. The experiment concluded that externally applied microcurrents may be preferable in the treatment of wounds.